Source code for pytorch_tabnet.utils

from torch.utils.data import Dataset
from torch.utils.data import DataLoader, WeightedRandomSampler
import torch
import numpy as np
import scipy
import json
from sklearn.utils import check_array
import pandas as pd
import warnings


[docs]class TorchDataset(Dataset): """ Format for numpy array Parameters ---------- X : 2D array The input matrix y : 2D array The one-hot encoded target """ def __init__(self, x, y): self.x = x self.y = y def __len__(self): return len(self.x) def __getitem__(self, index): x, y = self.x[index], self.y[index] return x, y
[docs]class SparseTorchDataset(Dataset): """ Format for csr_matrix Parameters ---------- X : CSR matrix The input matrix y : 2D array The one-hot encoded target """ def __init__(self, x, y): self.x = x self.y = y def __len__(self): return self.x.shape[0] def __getitem__(self, index): x = torch.from_numpy(self.x[index].toarray()[0]).float() y = self.y[index] return x, y
[docs]class PredictDataset(Dataset): """ Format for numpy array Parameters ---------- X : 2D array The input matrix """ def __init__(self, x): self.x = x def __len__(self): return len(self.x) def __getitem__(self, index): x = self.x[index] return x
[docs]class SparsePredictDataset(Dataset): """ Format for csr_matrix Parameters ---------- X : CSR matrix The input matrix """ def __init__(self, x): self.x = x def __len__(self): return self.x.shape[0] def __getitem__(self, index): x = torch.from_numpy(self.x[index].toarray()[0]).float() return x
[docs]def create_sampler(weights, y_train): """ This creates a sampler from the given weights Parameters ---------- weights : either 0, 1, dict or iterable if 0 (default) : no weights will be applied if 1 : classification only, will balanced class with inverse frequency if dict : keys are corresponding class values are sample weights if iterable : list or np array must be of length equal to nb elements in the training set y_train : np.array Training targets """ if isinstance(weights, int): if weights == 0: need_shuffle = True sampler = None elif weights == 1: need_shuffle = False class_sample_count = np.array( [len(np.where(y_train == t)[0]) for t in np.unique(y_train)] ) weights = 1.0 / class_sample_count samples_weight = np.array([weights[t] for t in y_train]) samples_weight = torch.from_numpy(samples_weight) samples_weight = samples_weight.double() sampler = WeightedRandomSampler(samples_weight, len(samples_weight)) else: raise ValueError("Weights should be either 0, 1, dictionnary or list.") elif isinstance(weights, dict): # custom weights per class need_shuffle = False samples_weight = np.array([weights[t] for t in y_train]) sampler = WeightedRandomSampler(samples_weight, len(samples_weight)) else: # custom weights if len(weights) != len(y_train): raise ValueError("Custom weights should match number of train samples.") need_shuffle = False samples_weight = np.array(weights) sampler = WeightedRandomSampler(samples_weight, len(samples_weight)) return need_shuffle, sampler
[docs]def create_dataloaders( X_train, y_train, eval_set, weights, batch_size, num_workers, drop_last, pin_memory ): """ Create dataloaders with or without subsampling depending on weights and balanced. Parameters ---------- X_train : np.ndarray Training data y_train : np.array Mapped Training targets eval_set : list of tuple List of eval tuple set (X, y) weights : either 0, 1, dict or iterable if 0 (default) : no weights will be applied if 1 : classification only, will balanced class with inverse frequency if dict : keys are corresponding class values are sample weights if iterable : list or np array must be of length equal to nb elements in the training set batch_size : int how many samples per batch to load num_workers : int how many subprocesses to use for data loading. 0 means that the data will be loaded in the main process drop_last : bool set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller pin_memory : bool Whether to pin GPU memory during training Returns ------- train_dataloader, valid_dataloader : torch.DataLoader, torch.DataLoader Training and validation dataloaders """ need_shuffle, sampler = create_sampler(weights, y_train) if scipy.sparse.issparse(X_train): train_dataloader = DataLoader( SparseTorchDataset(X_train.astype(np.float32), y_train), batch_size=batch_size, sampler=sampler, shuffle=need_shuffle, num_workers=num_workers, drop_last=drop_last, pin_memory=pin_memory, ) else: train_dataloader = DataLoader( TorchDataset(X_train.astype(np.float32), y_train), batch_size=batch_size, sampler=sampler, shuffle=need_shuffle, num_workers=num_workers, drop_last=drop_last, pin_memory=pin_memory, ) valid_dataloaders = [] for X, y in eval_set: if scipy.sparse.issparse(X): valid_dataloaders.append( DataLoader( SparseTorchDataset(X.astype(np.float32), y), batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=pin_memory, ) ) else: valid_dataloaders.append( DataLoader( TorchDataset(X.astype(np.float32), y), batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=pin_memory, ) ) return train_dataloader, valid_dataloaders
[docs]def create_explain_matrix(input_dim, cat_emb_dim, cat_idxs, post_embed_dim): """ This is a computational trick. In order to rapidly sum importances from same embeddings to the initial index. Parameters ---------- input_dim : int Initial input dim cat_emb_dim : int or list of int if int : size of embedding for all categorical feature if list of int : size of embedding for each categorical feature cat_idxs : list of int Initial position of categorical features post_embed_dim : int Post embedding inputs dimension Returns ------- reducing_matrix : np.array Matrix of dim (post_embed_dim, input_dim) to performe reduce """ if isinstance(cat_emb_dim, int): all_emb_impact = [cat_emb_dim - 1] * len(cat_idxs) else: all_emb_impact = [emb_dim - 1 for emb_dim in cat_emb_dim] acc_emb = 0 nb_emb = 0 indices_trick = [] for i in range(input_dim): if i not in cat_idxs: indices_trick.append([i + acc_emb]) else: indices_trick.append( range(i + acc_emb, i + acc_emb + all_emb_impact[nb_emb] + 1) ) acc_emb += all_emb_impact[nb_emb] nb_emb += 1 reducing_matrix = np.zeros((post_embed_dim, input_dim)) for i, cols in enumerate(indices_trick): reducing_matrix[cols, i] = 1 return scipy.sparse.csc_matrix(reducing_matrix)
[docs]def create_group_matrix(list_groups, input_dim): """ Create the group matrix corresponding to the given list_groups Parameters ---------- - list_groups : list of list of int Each element is a list representing features in the same group. One feature should appear in maximum one group. Feature that don't get assigned a group will be in their own group of one feature. - input_dim : number of feature in the initial dataset Returns ------- - group_matrix : torch matrix A matrix of size (n_groups, input_dim) where m_ij represents the importance of feature j in group i The rows must some to 1 as each group is equally important a priori. """ check_list_groups(list_groups, input_dim) if len(list_groups) == 0: group_matrix = torch.eye(input_dim) return group_matrix else: n_groups = input_dim - int(np.sum([len(gp) - 1 for gp in list_groups])) group_matrix = torch.zeros((n_groups, input_dim)) remaining_features = [feat_idx for feat_idx in range(input_dim)] current_group_idx = 0 for group in list_groups: group_size = len(group) for elem_idx in group: # add importrance of element in group matrix and corresponding group group_matrix[current_group_idx, elem_idx] = 1 / group_size # remove features from list of features remaining_features.remove(elem_idx) # move to next group current_group_idx += 1 # features not mentionned in list_groups get assigned their own group of singleton for remaining_feat_idx in remaining_features: group_matrix[current_group_idx, remaining_feat_idx] = 1 current_group_idx += 1 return group_matrix
[docs]def check_list_groups(list_groups, input_dim): """ Check that list groups: - is a list of list - does not contain twice the same feature in different groups - does not contain unknown features (>= input_dim) - does not contain empty groups Parameters ---------- - list_groups : list of list of int Each element is a list representing features in the same group. One feature should appear in maximum one group. Feature that don't get assign a group will be in their own group of one feature. - input_dim : number of feature in the initial dataset """ assert isinstance(list_groups, list), "list_groups must be a list of list." if len(list_groups) == 0: return else: for group_pos, group in enumerate(list_groups): msg = f"Groups must be given as a list of list, but found {group} in position {group_pos}." # noqa assert isinstance(group, list), msg assert len(group) > 0, "Empty groups are forbidding please remove empty groups []" n_elements_in_groups = np.sum([len(group) for group in list_groups]) flat_list = [] for group in list_groups: flat_list.extend(group) unique_elements = np.unique(flat_list) n_unique_elements_in_groups = len(unique_elements) msg = f"One feature can only appear in one group, please check your grouped_features." assert n_unique_elements_in_groups == n_elements_in_groups, msg highest_feat = np.max(unique_elements) assert highest_feat < input_dim, f"Number of features is {input_dim} but one group contains {highest_feat}." # noqa return
[docs]def filter_weights(weights): """ This function makes sure that weights are in correct format for regression and multitask TabNet Parameters ---------- weights : int, dict or list Initial weights parameters given by user Returns ------- None : This function will only throw an error if format is wrong """ err_msg = """Please provide a list or np.array of weights for """ err_msg += """regression, multitask or pretraining: """ if isinstance(weights, int): if weights == 1: raise ValueError(err_msg + "1 given.") if isinstance(weights, dict): raise ValueError(err_msg + "Dict given.") return
[docs]def validate_eval_set(eval_set, eval_name, X_train, y_train): """Check if the shapes of eval_set are compatible with (X_train, y_train). Parameters ---------- eval_set : list of tuple List of eval tuple set (X, y). The last one is used for early stopping eval_name : list of str List of eval set names. X_train : np.ndarray Train owned products y_train : np.array Train targeted products Returns ------- eval_names : list of str Validated list of eval_names. eval_set : list of tuple Validated list of eval_set. """ eval_name = eval_name or [f"val_{i}" for i in range(len(eval_set))] assert len(eval_set) == len( eval_name ), "eval_set and eval_name have not the same length" if len(eval_set) > 0: assert all( len(elem) == 2 for elem in eval_set ), "Each tuple of eval_set need to have two elements" for name, (X, y) in zip(eval_name, eval_set): check_input(X) msg = ( f"Dimension mismatch between X_{name} " + f"{X.shape} and X_train {X_train.shape}" ) assert len(X.shape) == len(X_train.shape), msg msg = ( f"Dimension mismatch between y_{name} " + f"{y.shape} and y_train {y_train.shape}" ) assert len(y.shape) == len(y_train.shape), msg msg = ( f"Number of columns is different between X_{name} " + f"({X.shape[1]}) and X_train ({X_train.shape[1]})" ) assert X.shape[1] == X_train.shape[1], msg if len(y_train.shape) == 2: msg = ( f"Number of columns is different between y_{name} " + f"({y.shape[1]}) and y_train ({y_train.shape[1]})" ) assert y.shape[1] == y_train.shape[1], msg msg = ( f"You need the same number of rows between X_{name} " + f"({X.shape[0]}) and y_{name} ({y.shape[0]})" ) assert X.shape[0] == y.shape[0], msg return eval_name, eval_set
[docs]def define_device(device_name): """ Define the device to use during training and inference. If auto it will detect automatically whether to use cuda or cpu Parameters ---------- device_name : str Either "auto", "cpu" or "cuda" Returns ------- str Either "cpu" or "cuda" """ if device_name == "auto": if torch.cuda.is_available(): return "cuda" else: return "cpu" elif device_name == "cuda" and not torch.cuda.is_available(): return "cpu" else: return device_name
[docs]class ComplexEncoder(json.JSONEncoder):
[docs] def default(self, obj): if isinstance(obj, (np.generic, np.ndarray)): return obj.tolist() # Let the base class default method raise the TypeError return json.JSONEncoder.default(self, obj)
[docs]def check_input(X): """ Raise a clear error if X is a pandas dataframe and check array according to scikit rules """ if isinstance(X, (pd.DataFrame, pd.Series)): err_message = "Pandas DataFrame are not supported: apply X.values when calling fit" raise TypeError(err_message) check_array(X, accept_sparse=True)
[docs]def check_warm_start(warm_start, from_unsupervised): """ Gives a warning about ambiguous usage of the two parameters. """ if warm_start and from_unsupervised is not None: warn_msg = "warm_start=True and from_unsupervised != None: " warn_msg = "warm_start will be ignore, training will start from unsupervised weights" warnings.warn(warn_msg) return
[docs]def check_embedding_parameters(cat_dims, cat_idxs, cat_emb_dim): """ Check parameters related to embeddings and rearrange them in a unique manner. """ if (cat_dims == []) ^ (cat_idxs == []): if cat_dims == []: msg = "If cat_idxs is non-empty, cat_dims must be defined as a list of same length." else: msg = "If cat_dims is non-empty, cat_idxs must be defined as a list of same length." raise ValueError(msg) elif len(cat_dims) != len(cat_idxs): msg = "The lists cat_dims and cat_idxs must have the same length." raise ValueError(msg) if isinstance(cat_emb_dim, int): cat_emb_dims = [cat_emb_dim] * len(cat_idxs) else: cat_emb_dims = cat_emb_dim # check that all embeddings are provided if len(cat_emb_dims) != len(cat_dims): msg = f"""cat_emb_dim and cat_dims must be lists of same length, got {len(cat_emb_dims)} and {len(cat_dims)}""" raise ValueError(msg) # Rearrange to get reproducible seeds with different ordering if len(cat_idxs) > 0: sorted_idxs = np.argsort(cat_idxs) cat_dims = [cat_dims[i] for i in sorted_idxs] cat_emb_dims = [cat_emb_dims[i] for i in sorted_idxs] return cat_dims, cat_idxs, cat_emb_dims